Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Vasc Health Risk Manag ; 19: 139-144, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2262714

RESUMEN

Introduction: Ascorbic acid and calcitriol were frequently utilized in conjunction as therapy during the COVID-19 pandemic, and individuals with minor symptoms had notable improvements. There have been a few studies, often with conflicting findings, that examine the use of them for endothelium restoration and numerous clinical trial studies that failed to establish the efficacy. The aim of this study was to find the efficacy of ascorbic acid compared to calcitriol on the inflammatory markers monocyte chemoattractant protein-1 (MCP-1), nitric oxide (NO), and superoxide dismutase (SOD), as protective agents which play an important role in the early stages of atherosclerosis formation. This study was an experimental in vivo study. Methods: The total of 24 male Rattus norvegicus strain Wistar rats were divided into 4 groups, namely: control/normal group (N), atherosclerosis group (DL) given atherogenic diet, atherosclerosis group given atherogenic diet and ascorbic acid (DLC), and atherosclerosis group given atherogenic diet and calcitriol (DLD) treatment for 30 days. Results: Ascorbic acid and calcitriol treatment was significantly effective (P<0.05) in lowering expression of MCP-1 and increasing NO and SOD level. Calcitriol was superior to ascorbic acid in increasing SOD (P<0.05). There was no significant difference between ascorbic acid and calcitriol in decreasing MCP-1 and increasing NO (P>0.05). Discussion: Both treatments could reduce MCP-1, and increase NO and SOD by increasing antioxidants. In this study calcitriol was superior to ascorbic acid in increasing SOD, but not NO and decreasing MCP-1. According to the theory, it was found that calcitriol through nuclear factor erythroid 2-related factor 2 (Nrf2) causes a direct increase in the amount of SOD. Nrf2 is an emerging regulator of cellular resistance to oxidants. Conclusion: Ascorbic acid and calcitriol treatment was able to reduce MCP-1 and increase NO and SOD in atherosclerosis rat. Calcitriol was significantly superior in increasing SOD levels compared to ascorbic acid.


Asunto(s)
Ácido Ascórbico , Aterosclerosis , Calcitriol , Animales , Masculino , Ratas , Ácido Ascórbico/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Calcitriol/farmacología , Quimiocina CCL2/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico , Estrés Oxidativo , Ratas Wistar , Superóxido Dismutasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA